New paper on lidar DEM evaluation by Cody Gillin

2015_MayGillin, C.P., Bailey, S.W., McGuire, K.J., Prisley, S.P., 2015. Evaluation of lidar-derived DEMs through terrain analysis and field comparison, Photogrammetric Engineering & Remote Sensing, 81(5): 387-396, doi: 10.14358/PERS.81.5.387.

Abstract

Topographic analysis of watershed-scale soil and hydrological processes using digital elevation models (DEMs) is commonplace, but most studies have used DEMs of 10 m resolution or coarser. Availability of higher-resolution DEMs created from light detec- tion and ranging (lidar) data is increasing but their suitability for such applications has received little critical evaluation. Two different 1 m DEMs were re-sampled to 3, 5, and 10 m resolu- tions and used with and without a low-pass smoothing filter to delineate catchment boundaries and calculate topographic metrics. Accuracy was assessed through comparison with field slope measurements and total station surveys. DEMs provided a good estimate of slope values when grid resolution reflected the field measurement scale. Intermediate scale DEMs were most consistent with land survey techniques in delineating catchment boundaries. Upslope accumulated area was most sensitive to grid resolution, with intermediate resolutions producing a range of UAA values useful in soil and groundwater analysis.